Physics 513, Quantum Field Theory Homework 6

Due Tuesday, $21^{\text {st }}$ October 2003

Jacob Lewis Bourjaily

1. For the following derivations it will be helpful to recall the following:

$$
\begin{aligned}
\mathcal{P} \psi(t, \vec{x}) \mathcal{P}^{\dagger} & =\eta_{a} \gamma^{0} \psi(t,-\vec{x}) ; \\
\mathcal{P} \bar{\psi}(t, \vec{x}) \mathcal{P}^{\dagger} & =\eta_{a}^{*} \bar{\psi}(t,-\vec{x}) \gamma^{0} ; \\
\mathcal{C} \psi \mathcal{C}^{\dagger} & =-i\left(\bar{\psi} \gamma^{0} \gamma^{2}\right)^{\top} ; \\
\mathcal{C} \bar{\psi} \mathcal{C}^{\dagger} & =-i\left(\gamma^{0} \gamma^{2} \psi\right)^{\top} ; \\
\mathcal{T} \psi\left(t, \vec{x} \mathcal{T}^{\dagger}\right. & =\gamma^{1} \gamma^{3} \psi(-t, \vec{x}) ; \\
\mathcal{T} \bar{\psi}(t, \vec{x}) \mathcal{T}^{\dagger} & =-\bar{\psi}(-t, \vec{x}) \gamma^{1} \gamma^{3} .
\end{aligned}
$$

a) We are to verify the transformation properties of $A^{\mu} \equiv \bar{\psi} \gamma^{\mu} \gamma^{5} \psi$ and $T^{\mu \nu} \equiv \bar{\psi} \sigma^{\mu \nu} \psi$ under \mathcal{P}.

Let us first consider the axial vector A^{μ}.

$$
\begin{aligned}
\mathcal{P} A^{\mu} \mathcal{P}^{\dagger}=\mathcal{P} \bar{\psi} \gamma^{\mu} \gamma^{5} \psi \mathcal{P}^{\dagger} & =\eta_{a}^{*} \bar{\psi} \gamma^{0} \gamma^{\mu} \gamma^{5} \eta_{a} \gamma^{0} \psi \\
& =\bar{\psi} \gamma^{0} \gamma^{\mu} \gamma^{5} \gamma^{0} \psi \\
& =-\bar{\psi} \gamma^{0} \gamma^{\mu} \gamma^{0} \gamma^{5} \psi \\
& =-\bar{\psi} \gamma_{\mu} \gamma^{5} \psi=-A_{\mu}
\end{aligned}
$$

The last step can be seen by noticing that

$$
\gamma^{0} \gamma^{\mu} \gamma^{0}=\left\{\begin{array}{lr}
\gamma^{\mu} & \mu=0 \\
-\gamma^{\mu} & \mu=1,2,3
\end{array}\right\}=\gamma_{\mu} .
$$

Now we will consider the transformation of the tensor $T^{\mu \nu}$.

$$
\begin{aligned}
\mathcal{P} T^{\mu \nu} \mathcal{P}^{\dagger}=\mathcal{P} \bar{\psi} \sigma^{\mu \nu} \psi \mathcal{P}^{\dagger} & =\eta_{a}^{*} \bar{\psi} \gamma^{0} \sigma^{\mu \nu} \eta_{a} \gamma^{0} \psi \\
& =\bar{\psi} \gamma^{0} \sigma^{\mu \nu} \gamma^{0} \psi \\
& =\bar{\psi} \sigma_{\mu \nu} \psi=T_{\mu \nu}
\end{aligned}
$$

Similar to the axial vector case, the last step is a result of directly verifying the identity

$$
\gamma^{0} \sigma^{\mu \nu} \gamma^{0}=\frac{i}{2}\left(\gamma^{0} \gamma^{\mu} \gamma^{\nu} \gamma^{0}-\gamma^{0} \gamma^{\nu} \gamma^{\mu} \gamma^{0}\right)=\left\{\begin{array}{lr}
\sigma^{\mu \nu} & \mu, \nu \neq 0 \text { or } \mu, \nu=0 \\
-\sigma^{\mu \nu} & \text { one of } \mu \text { or } \nu=0
\end{array}\right\}=\sigma_{\mu \nu}
$$

b) We are to verify the transformation properties of $V^{\mu} \equiv \bar{\psi} \gamma^{\mu} \psi$ and $A^{\mu} \equiv \bar{\psi} \gamma^{\mu} \gamma^{5} \psi$ under \mathcal{C}.

Let us first consider the transformation of the vector V^{μ}.

$$
\begin{aligned}
\mathcal{C} V^{\mu} \mathcal{C}^{\dagger}=\mathcal{C} \bar{\psi} \gamma^{\mu} \psi \mathcal{C}^{\dagger} & =-i\left(\gamma^{0} \gamma^{2}\right)^{\top} \gamma^{\mu}(-i)\left(\bar{\psi} \gamma^{0} \gamma^{2}\right)^{\top} \\
& =-\bar{\psi} \gamma^{0} \gamma^{2} \gamma^{\mu \boldsymbol{\top}} \gamma^{0} \gamma^{2} \psi \\
& =\bar{\psi} \gamma^{0} \gamma^{2} \gamma^{\mu \top} \gamma^{2} \gamma^{0} \psi \\
& =-\bar{\psi} \gamma^{\mu} \psi=-V^{\mu}
\end{aligned}
$$

Let us now consider the axial vector A^{μ}.

$$
\begin{aligned}
\mathcal{C} A^{\mu} \mathcal{C}^{\dagger}=\mathcal{C} \bar{\psi} \gamma^{\mu} \gamma^{5} \psi \mathcal{C}^{\dagger} & =-i\left(\gamma^{0} \gamma^{2} \psi\right)^{\top} \gamma^{\mu} \gamma^{5}(-i)\left(\bar{\psi} \gamma^{0} \gamma^{2}\right)^{\top} \\
& =-\bar{\psi} \gamma^{0} \gamma^{2} \gamma^{5} \gamma^{\mu \boldsymbol{\top}} \gamma^{0} \gamma^{2} \psi \\
& =\bar{\psi} \gamma^{0} \gamma^{2} \gamma^{\mu \boldsymbol{\top}} \gamma^{5} \gamma^{0} \gamma^{2} \psi \\
& =-\bar{\psi} \gamma^{0} \gamma^{2} \gamma^{\mu \top} \gamma^{5} \gamma^{2} \gamma^{0} \psi \\
& =-\bar{\psi} \gamma^{0} \gamma^{2} \gamma^{\mu \top} \gamma^{2} \gamma^{0} \gamma^{5} \psi \\
& =\bar{\psi} \gamma^{\mu} \gamma^{5} \psi=A^{\mu} .
\end{aligned}
$$

c) We are to confirm the transformation properties of $P \equiv i \bar{\psi} \gamma^{5} \psi$ and $V^{\mu} \equiv \bar{\psi} \gamma^{\mu} \psi$ under \mathcal{T}. First let us consider the transformation of the pseudo-scalar P.

$$
\begin{aligned}
\mathcal{T} P \mathcal{T}^{\dagger}=\mathcal{T} i \bar{\psi} \gamma^{5} \psi \mathcal{T}^{\dagger} & =-i\left(-\bar{\psi} \gamma^{1} \gamma^{3}\right) \gamma^{5}\left(\gamma^{1} \gamma^{3} \psi\right) \\
& =i \bar{\psi} \gamma^{1} \gamma^{3} \gamma^{5} \gamma^{1} \gamma^{3} \psi \\
& =-i \bar{\psi} \gamma^{5} \psi=-P
\end{aligned}
$$

Let us now consider the transformation of the vector V^{μ}.

$$
\begin{aligned}
\mathcal{T} V^{\mu} \mathcal{T}^{\dagger}=\mathcal{T} \bar{\psi} \gamma^{\mu} \psi \mathcal{T}^{\dagger} & =\bar{\psi} \gamma^{3} \gamma^{1} \gamma^{\mu *} \gamma^{1} \gamma^{3} \psi \\
& =\bar{\psi} \gamma_{\mu} \psi=V_{\mu}
\end{aligned}
$$

2. a) We are to demonstrate the transformation properties of V^{μ} and A^{μ}, as previously defined, under $\mathcal{C} \mathcal{P}$.

We have almost computed every detail necessary for our solution in question (1) above. The only transformation that we have not yet confirmed is the transformation of the vector V^{μ} under \mathcal{P}. Let us compute that now.

$$
\begin{aligned}
\mathcal{P} V^{\mu} \mathcal{P}^{\dagger}=\mathcal{P} \bar{\psi} \gamma^{\mu} \psi \mathcal{P}^{\dagger} & =\eta_{a}^{*} \bar{\psi} \gamma^{0} \gamma^{\mu} \eta_{a} \gamma^{0} \psi, \\
& =\bar{\psi} \gamma^{0} \gamma^{\mu} \gamma^{0} \psi \\
& =\bar{\psi} \gamma_{\mu} \psi=V_{\mu} .
\end{aligned}
$$

By simply applying our transformation properties derived above in succession, we observe that,

$$
\begin{gathered}
V^{\mu}=\bar{\psi} \gamma^{\mu} \psi \quad \xrightarrow{\mathcal{P}} \quad \bar{\psi} \gamma_{\mu} \psi \quad \xrightarrow{\mathcal{C}}-\bar{\psi} \gamma_{\mu} \psi=-V_{\mu} \\
A^{\mu}=\bar{\psi} \gamma^{\mu} \gamma^{0} \psi \xrightarrow{\mathcal{P}}-\bar{\psi} \gamma_{\mu} \gamma^{5} \psi \xrightarrow{\mathcal{C}}-\bar{\psi} \gamma_{\mu} \gamma^{5} \psi=-A_{\mu}
\end{gathered}
$$

b) Expecting an analogy with the electromagnetic current vector, we will check the transformation properties of each.
agree? agree? agree?

c) We will demonstrate that the weak Lagrangian,

$$
\mathcal{L}_{\text {weak }} \approx \frac{G_{F}}{\sqrt{2}}\left(V_{\mu}-A_{\mu}\right)\left(V^{\mu}-A^{\mu}\right)
$$

is not invariant under \mathcal{C} or \mathcal{P}, yet is invariant under $\mathcal{C P}$.
Like before, I will directly compute all of the transformations using the table made above in part (b) above. First note that

$$
\mathcal{L}_{\text {weak }} \propto V^{2}-2 V_{\mu} A^{\mu}+A^{2} .
$$

When we take each of the of transformations from above, we see that

$$
\begin{aligned}
& V^{2}-2 V_{\mu} A^{\mu}+A^{2} \xrightarrow{\mathcal{P}} V^{2}+2 V_{\mu} A^{\mu}+A^{2} \neq \mathcal{L}_{\text {weak }} ; \\
& V^{2}-2 V_{\mu} A^{\mu}+A^{2} \xrightarrow{\mathcal{C}} V^{2}+2 V_{\mu} A^{\mu}+A^{2} \neq \mathcal{L}_{\text {weak }} ; \\
& V^{2}-2 V_{\mu} A^{\mu}+A^{2} \xrightarrow{\mathcal{C P}} V^{2}-2 V_{\mu} A^{\mu}+A^{2}=\mathcal{L}_{\text {weak }} .
\end{aligned}
$$

So $\mathcal{L}_{\text {weak }}$ is not invariant under \mathcal{C} or \mathcal{P} by is under $\mathcal{C} \mathcal{P}$, as we were required to demonstrate. $\grave{o} \pi \epsilon \rho \bar{\epsilon} \delta \epsilon \epsilon \iota \delta \epsilon \bar{\iota} \xi \alpha \iota$
3. Let us define the product of the 3 discrete symmetry transformations as $\Theta \equiv \mathcal{C} \mathcal{P} \mathcal{T}$. We must show that under Θ, the Dirac field transforms by the rule

$$
\Theta \psi(x) \Theta^{\dagger}=\gamma^{5} \psi^{*}(-x)
$$

where

$$
\psi^{*}(x) \equiv\left(\psi(x)^{\dagger}\right)^{\top} .
$$

Like so many times before, we will proceed by direct calculation.

$$
\begin{aligned}
\Theta \psi(x) \Theta^{\dagger} & =\mathcal{C} \mathcal{P} \mathcal{T} \psi(t, \vec{x}) \mathcal{T}^{\dagger} \mathcal{P}^{\dagger} \mathcal{C}^{\dagger}, \\
& =\mathcal{C} \mathcal{P} \gamma^{1} \gamma^{3} \psi(-t, \vec{x}) \mathcal{P}^{\dagger} \mathcal{C}^{\dagger}, \\
& =\eta_{a} \mathcal{C} \gamma^{1} \gamma^{3} \gamma^{0} \psi(-x) \mathcal{C}^{\dagger}, \\
& =-i \eta_{a} \gamma^{1} \gamma^{3} \gamma^{0}\left(\psi(-x)^{\dagger} \gamma^{2}\right)^{\top}, \\
& =-i \eta_{a} \gamma^{1} \gamma^{3} \gamma^{0} \gamma^{2} \psi^{*}(-x), \\
& =-i \eta_{a} \gamma^{0} \gamma^{1} \gamma^{3} \gamma^{2} \psi^{*}(-x), \\
& =i \eta_{a} \gamma^{0} \gamma^{1} \gamma^{2} \gamma^{3} \psi^{*}(-x), \\
& =\eta_{a} \gamma^{5} \psi^{*}(-x)
\end{aligned}
$$

$\grave{o} \pi \epsilon \rho \stackrel{\text { 'ि }}{ } \delta \epsilon \iota \delta \epsilon \bar{\iota} \xi \alpha \iota$
4. For the following derivations it will be useful to recall that

$$
\gamma_{W}^{0}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad \gamma_{W}^{i}=\left(\begin{array}{cc}
0 & \sigma^{i} \\
-\sigma^{i} & 0
\end{array}\right)
$$

where

$$
\sigma^{1}=\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right), \quad \sigma^{2}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), \quad \sigma^{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) .
$$

a) We must show that any new matrices defined by

$$
\gamma^{\mu}=U \gamma_{W}^{\mu} U^{\dagger}
$$

where U is an arbitrary 4×4 unitary matrix, satisfy the dirac algebra. This is proven by demonstrating that

$$
\left\{\gamma^{\mu}, \gamma^{\nu}\right\}=2 g^{\mu \nu}
$$

Knowing that the Weyl-representation γ^{μ} 's satisfy the Dirac algebra, we will directly show that,

$$
\begin{aligned}
\left\{\gamma^{\mu}, \gamma^{\nu}\right\} & =\left\{U \gamma_{W}^{\mu} U^{\dagger}, U \gamma_{W}^{\nu} U^{\dagger}\right\} \\
& =U \gamma_{W}^{\mu} U^{\dagger} U \gamma_{W}^{\nu} U^{\dagger}+U \gamma_{W}^{\nu} U^{\dagger} U \gamma_{W}^{\mu} U^{\dagger} \\
& =U\left(\gamma_{W}^{\mu} \gamma_{W}^{\nu}+\gamma_{W}^{\nu} \gamma_{W}^{\mu}\right) U^{\dagger} \\
& =2 U g^{\mu \nu} U^{\dagger}=2 g^{\mu \nu}
\end{aligned}
$$

b) Consider the unitary matrix which produces the Dirac representation

$$
U_{D}=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right) .
$$

We must show that U_{D} is in fact unitary and we must find the matrices γ^{μ} in the Dirac representation.

The unitarity of U_{D} is trivial

$$
U_{D} U_{D}^{\dagger}=\frac{1}{2}\left(\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right)=1_{4 \times 4}
$$

When the matrices are directly computed, we see that

$$
\gamma^{0}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), \quad \gamma^{i}=\gamma_{W}^{i}
$$

c) We must now show that in a general frame, the Dirac spinor takes the form,

$$
u^{s}(p)=\binom{\sqrt{E+m} \xi^{s}}{\vec{\sigma} \cdot \vec{p} \xi^{s} / \sqrt{E+m}}
$$

This is demonstrated by showing that it solves the Dirac equation, or, namely, that

$$
\gamma^{\mu} p_{\mu} u^{s}(p)=m u^{s}(p)
$$

This is simple to evaluate directly. Noting our Dirac representation of the γ^{μ} 's and that $p_{0}=E$, we see

$$
\begin{aligned}
\gamma^{\mu} p_{\mu} u^{s}(p) & =\left(\begin{array}{cc}
p_{0} & -\vec{\sigma} \cdot \vec{p} \\
\vec{\sigma} \cdot \vec{p} & -p_{0}
\end{array}\right)\binom{\sqrt{E+m} \xi^{s}}{\vec{\sigma} \cdot \vec{p} \xi^{s} / \sqrt{E+m}} \\
& =\left(\begin{array}{c}
{\left[\begin{array}{l}
\left.E \sqrt{E+m}-\frac{E^{2}-m^{2}}{\sqrt{E+m}}\right] \xi^{s} \\
{\left[\vec{\sigma} \cdot \vec{p} \sqrt{E+m}-\frac{E \vec{C} \cdot \vec{p}}{\sqrt{E+m}}\right] \xi^{s}}
\end{array}\right)} \\
\end{array}\right) \\
& =\binom{\sqrt{E+m}\left(E-\frac{E^{2}-m^{2}}{E+m}\right) \xi^{s}}{\frac{\vec{\sigma} \cdot \vec{p}}{\sqrt{E+m}}(E+m-E) \xi^{s}} \\
& =\binom{\sqrt{E+m}(E-E+m) \xi^{s}}{m \vec{\sigma} \cdot \vec{p} \xi^{s} / \sqrt{E+m}} \\
& =\binom{m \sqrt{E+m} \xi^{s}}{m \vec{\sigma} \cdot \vec{p} \xi^{s} / \sqrt{E+m}} \\
& =m u^{s}(p) .
\end{aligned}
$$

d) We must show that the solution found in part (c) is normalized in the standard way.

Given that ξ is normalized such that $\xi \xi^{\dagger}=1$, we see that

$$
\begin{aligned}
\bar{u} u=u^{\dagger} \gamma^{0} u & =\left(\begin{array}{ll}
\sqrt{E+m} \xi^{\dagger} & \vec{\sigma} \cdot \vec{p} \xi^{\dagger} / \sqrt{E+m}
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)\binom{\sqrt{E+m} \xi}{\vec{\sigma} \cdot \vec{p} \xi / \sqrt{E+m}} \\
& =\xi^{\dagger} \xi\left((E+m)-\frac{(\vec{\sigma} \cdot \vec{p})^{2}}{E+m}\right) \\
& =\frac{E^{2}+2 m E+m^{2}-\vec{p}^{2}}{E+m} \\
& =\frac{E^{2}+2 m E+m^{2}-E^{2}+m^{2}}{E+m} \\
& =\frac{2 m E+2 m^{2}}{E+m} \\
& =2 m
\end{aligned}
$$

